

Investigating the Limits of Graph Foundation Model in Real-World Travel Recommendation Systems

Nayoung Lee^{1,2}, Gunmin Lee³, Donghun Lee¹

1: Department of Mathematics, Korea University 2: Nara Information Co. Ltd. 3: Department of Electrical and Computer Engineering, Seoul National University

Introduction		Empirical Validation							
Graph Structure in a Korean Travel Record Dataset Recommendation Performance at $k = 5$									
OFETHA	Method	Model	MSE (↓)	MAE (↓)	CS (个)	P@5(个)	R@5 (个)		
두리무지 여 롯데뮤지엄	GFM	GraphAny	20.9747	2.3957	0.9716	0.0008	0.0013		
² 대 국회의사당 장양도성박물관 ² 적보고		GCN	13.2601	1.9900	0.9813	0.0128	0.0211		
사·사·사································	Graph-based	GraphSAGE	16.0332	2.4205	0.9674	0.0001	0.0002		
신라아이 비 정에 전철 응인 비 공원 이 가공원 이 가공원 이 여실 이 것을 하 기 볼 및 술관 롯데 백화 바람님 명 통 행점		Node2Vec	20.1005	2.3473	0.9726	0.0009	0.0016		
북채 귤립 중 한 이 과 학 관 만 일 갖 특 및 작 일 및 특 및 작 일 및 전 대 을 받 문 확 문 핵 전 비 위 을 받 관 관 문 핵 전 비 위 을 받 관 관 문 핵 전 비 위 을 받 관 관 문 핵 전 비 위 을 받 관 관 문 핵 전 비 위 을 받 관 관 문 핵 전 비 위 을 받 관 관 관 관 관 관 관 관 관 관 관 관 관 관 관 관 관 관		VAE	<u>8.4498</u>	<u>1.7581</u>	0.9826	0.0022	0.0037		
·별미당도서관 흥인지문 · · · · · · · · · · · · · · · · · · ·	Vector-based	β-VAE	13.5527	2.1140	0.9763	0.0012	0.0022		
에스백도리 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이		AE	1.095	0.7028	0.9938	0.0331	0.0592		

Graph Foundation Models

- Trained on diverse graph data to capture graph patterns
- Expected transfer across different domains and applications

Research Hypothesis

GFMs will perform well on travel recommendation task by exploiting the inherent bipartite graph structure in the dataset.

Sensitivity to Top-k Parameter Method R@5(个) R@20(个) P@20(个) R@10(个) Model P@10(个) P@5(个) GFM GraphAny 0.0008 0.0008 0.0008 0.0013 0.0026 0.0057 GCN 0.0128 0.0121 0.0118 0.0211 0.0385 0.0735 Graph-based GraphSAGE 0.0001 0.0001 0.0001 0.0002 0.0006 0.0011 Node2Vec 0.0009 0.0008 0.0008 0.0016 0.0028 0.0058 VAE 0.0022 0.0037 0.0073 0.0127 0.0022 0.0019 Vector-based β-VAE 0.0012 0.0013 0.0012 0.0022 0.0042 0.0081 AE 0.0592 0.0641 0.0331 0.0180 0.0100 0.0713

Graph-based Models: Sensitivity to Info. Flow Parameters

Model	Range	MSE (↓)	MAE (↓)	P@5 (个)	R@5 (个)
GCN	1-hop	16.1004	2.2242	0.0443	0.0927
	2-hop	14.9774	2.1022	0.0190	0.0373
	3-hop	15.2528	2.1256	0.0118	0.0247
Node2Vec	Walk-5/Context-3	19.581	2.3366	0.0148	0.0294
	Walk-10/Context-5	23.2161	2.4858	0.0021	0.0046
	Walk-20/Context-10	22.4065	2.4805	0.0016	0.0032

Discussion & Conclusion

Discussion: Graph-based models are sensitive to info. flow params

Methods

Travel Recommendation Task: Problem Definition

- User set $\mathbb{U} = \{u_1, \dots, u_n\}$, with feature X_u for each user u
- Destination set $\mathbb{D} = \{d_1, \cdots, d_m\}$
- Visit matrix $V \in \{0,1\}^{n \times m}$ where $v_{ij} = \begin{cases} 1 & \text{if user } u_i \text{ visited dest. } d_j \\ 0 & \text{otherwise} \end{cases}$
- Goal: learn a recommendation function from \mathbb{U},\mathbb{D},V
- How: $\arg^{n} \operatorname{top} k^{n} f(u_{q}, d)$ where $f: \mathbb{U} \times \mathbb{D} \to \mathbb{R}$ a score function $d \in \mathbb{D}$
- By: error-based metrics (MSE, MAE), ranking metrics (P@k, R@k)

GFM Model (GraphAny [1]) – Loss Function

$$\mathcal{L} = \|X - \hat{X}\|_{2}^{2} + \lambda \left(-\sum_{(i,j)} \{v_{ij} \log \hat{v}_{ij} + (1 - v_{ij}) \log(1 - \hat{v}_{ij})\}\right)$$

Feature Reconstruction L2 Loss

Adjacency Prediction BCE Loss

Model Comparison

	GFM	Graph-based	Vector-based
Info. Flow	Unrestricted multi-hop	Limited neighborhood	Direct mapping

Conclusion

Graph-based methods backfired in travel recommendation task. Also, GFMs may need more than inherent graph structure of target dataset to perform well across diverse tasks.

Reference

[1] Zhao, J., Zhu, Z., Galkin, M., Mostafa, H., Bronstein, M., Tang, J.: Fully-inductive node classification on arbitrary graphs. International Conference on Learning Representations (ICLR) (2025)
[2] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. CoRR abs/1609.02907 (2016)

[3] Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems
[4] Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Krishnapuram, B., Shah, M., Smola, A.J., Aggarwal, C.C., Shen, D., Rastogi, R. (eds.) Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge

Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. pp. 855–864. ACM (2016)
[5] Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Bengio, Y., LeCun, Y. (eds.) 2nd
International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings (2014)
[6] Higgins, I., Matthey, L., Pal, A., Burgess, C.P., Glorot, X., Botvinick, M.M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. In: 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017
[7] Bank, D., Koenigstein, N., Giryes, R.: Autoencoders. Machine learning for data science handbook: data mining and knowledge discovery handbook pp. 353–374 (2023)

This work is partially done through the internship phase of Mathematical Data Science (MDS) program by Department of Mathematics, Korea University.