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Abstract. Graph foundation models (GFMs) have demonstrated re-
markable potential in capturing intricate relational patterns, achieving
state-of-the-art results in numerous graph-centric tasks. However, their
real-world applicability remains underexplored in highly domain-specific
contexts, such as travel recommendation. In this paper, we present a
comprehensive evaluation of GFMs for large-scale travel recommenda-
tion tasks using a bipartite user–destination dataset of 86,761 travelers
within South Korea. We compare representative GFM against both con-
ventional graph-based methods and vector-based methods. Contrary to
the prevailing expectation that GFMs should outperform traditional ar-
chitectures, our empirical findings reveal that domain-specific constraints
can dilute the benefits of extensive multi-hop message passing, leading to
suboptimal performance. Our work highlights a critical need to validate
GFMs against domain-specific constraints, offering a roadmap for their
future adaptation and optimization in real-world applications.

Keywords: Graph foundation model · Travel recommendation · Domain-
specific constraints.

1 Introduction

Graph neural networks (GNNs)[15] have emerged as a powerful approach for
making inferences and predictions on graph-structured data, offering a nat-
ural way to process relational information. However, these models often get
over-specialized to specific datasets[16], limiting their generalization capabilities
across different domains and tasks. To address this limitation, graph founda-
tion models (GFMs) which show better generalization and capabilities in various
graph-related tasks, were introduced[13]. These models, trained on diverse graph
data, capture universal graph patterns that can be transferred across different
domains and applications.

In this work, we test these claims by applying GFM to travel recommen-
dation task. This domain presents a unique challenge where the data is nat-
urally represented as a collection of subgraphs, each corresponding to a real
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travel trajectory [18]. While this structure might seem ideal for graph-based
approaches [3], our comprehensive experiments reveal unexpected limitations of
both GNNs and GFM in this context. Surprisingly, our results show that simpler
vector-based approaches outperform sophisticated graph-based methods, includ-
ing GFM. Through careful analysis, we identify two key findings that contribute
to the broader understanding of GFM in real world applications:

1. We identify fundamental limitations of GFM in domain-specific applications,
particularly in travel recommendation systems. Our analysis reveals that
indirect connections in user-location-user patterns act as noise rather than
meaningful relationships, demonstrating how domain characteristics can fun-
damentally limit GFM effectiveness.

2. We empirically validate these limitations through comprehensive experi-
ments with various graph-based approaches. Our results show that tradi-
tional GFM performance metrics like hop count and dataset size can in-
versely correlate with recommendation quality, challenging conventional as-
sumptions about GFM applications in specific domains.

2 Problem Setting

Travel recommendation problem is a task that recommends new users tours
based on data of previous users. This problem has advantages over other recom-
mendation tasks when utilizing graph based datasets [4]. We focus on developing
a personalized recommendation system for domestic travel destinations in South
Korea. We aim to recommend top-k destinations based on user characteristics,
including personal preferences, gender, and age group. Furthermore, we extend
our approach to address the generalized problem that can be applied to various
recommendation problems.

2.1 Dataset Characteristics

As a concrete case study for our approach, we utilize a dataset consisting of travel
records of 86,761 users during August to November 2022 who have taken domes-
tic trips in South Korea. The data naturally forms a bipartite graph structure
[1], where:

– Users (U) and destinations (D) form two distinct node sets.
– Edges (E) represent visits from users to destinations.

This structure suggests natural affinity for graph-based approaches, as it
creates a network of connections between users through their shared destination
visits. Following common practice in recommendation systems, these shared des-
tinations could theoretically indicate similarity in personal preferences.
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2.2 Problem Formulation

Formally, our input for the travel recommendation problem can be defined as
follows:

U = {u1, u2, . . . , un},

D = {d1, d2, . . . , dm},

V ∈ {0, 1}n×m, where vij =

{
1 if user i visited destination j,

0 otherwise,

where U is a set of n users with their features Xu including age group, gender,
and personal preferences, D is a set of m destinations, and V which is a historical
visit matrix.

The goal of the problem is to recommend a ranked list of top-k destinations
for any given user uq that best matches personal preferences. We define these
"best matches" through a scoring function f(uq, dj) that quantifies how well
destination dj ∈ D aligns with user preferences, incorporating both demographic
attributes and implicit features from past interactions. The function

f : U× D → R

outputs a score indicating the predicted utility of each destination for the user.
The recommended destinations are then selected by ranking all destinations
based on these scores and choosing the top-k:

{d∗1, d∗2, . . . , d∗k} = arg top k
d∈D

f(uq, d).

To evaluate the recommendation results, we employ five evaluation metrics:

– Two error-based metrics: mean squared error (MSE) and mean absolute
error (MAE) to measure the accuracy of predictions.

– One similarity metric: cosine similarity (CS) to assess the semantic close-
ness of recommendations.

– Two ranking metrics: precision@k and recall@k to evaluate the quality of
top-k recommendations.

3 Methods

We compare three distinct approaches for travel recommendation: GFM, graph-
based models, and vector-based models. The comparison of the three different
approaches is shown in table 1.
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GFM Graph-based Vector-based

Info. Flow Unrestricted multi-hop Limited neighborhood Direct mapping
Relations All possible paths Local connections Point-to-point mappings
Complexity Exponential growth Linear growth Constant
Example [17] [11], [7], [6] [10], [8], [2]

Table 1. Comparison of models by information propagation

3.1 Graph Foundation Model

The Graph Foundation Model (GFM) approach adapts GraphAny to our travel
recommendation task, focusing on the bipartite structure of user-place rela-
tionships. The model processes information through dual channels: a low-pass
channel and a high-pass channel. The low-pass channel captures smooth, global
patterns across the graph by aggregating neighborhood information, while the
high-pass channel emphasizes local variations and structural differences between
nodes. These channels are defined as:

Lk = D−1AX and Hk = (I −D−1A)X, (1)

where Lk represents the low-pass channel output, Hk denotes the high-pass
channel output, D is the degree matrix, A is the adjacency matrix, I is the
identity matrix, and X represents the node feature matrix. The low-pass channel
Lk implements a normalized adjacency operation, effectively averaging features
across connected nodes, while the high-pass channel Hk captures the deviation
of each node’s features from its neighborhood average.

This structure allows for multi-hop information propagation across the graph,
though this can potentially lead to noise accumulation through indirect relation-
ships. The model’s learning objective is formulated through a combination of
reconstruction and link prediction [12] losses:

L = ∥X − X̂∥2 + λ(−
∑
(i,j)

[yij log(ŷij) + (1− yij) log(1− ŷij)]), (2)

where |X−X̂|2 represents the reconstruction loss measuring the model’s abil-
ity to preserve node features, yij indicates whether nodes i and j are connected
in the original graph, ŷij is the model’s predicted probability of connection be-
tween nodes i and j, and λ is a balancing hyperparameter. The reconstruction
term ensures feature preservation, while the binary cross-entropy term guides
the model to accurately predict graph structure.

3.2 Graph-based Models

Graph-based models provide a more controlled approach to utilizing network
structure. Each graph based model implements distinct strategies for managing
information propagation and neighborhood aggregation:
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- GCN[11] employ a layer-wise propagation rule:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)), (3)

where Ã = A+ I is the adjacency matrix with self-loops, D̃ is the corresponding
degree matrix, H(l) represents node features at layer l, W (l) is the learnable
weight matrix, and σ is a non-linear activation function.

- GraphSAGE[7] employs a neighborhood sampling strategy:

h(l+1)
v = σ(W (l) · AGGREGATE({h(l)

u ,∀u ∈ N (v)})), (4)

where N (v) is a sampled set of neighbors for node v, and AGGREGATE is a
permutation-invariant aggregation function.

- Node2Vec[6] learns embeddings through biased random walks, balancing
between breadth-first and depth-first graph exploration:

f : V → Rd, (5)

where f is the embedding function mapping nodes to a d-dimensional space,
optimized to preserve both local and global network structure.

These methods are trained using binary cross-entropy loss for link prediction:

L = −
∑
(u,p)

[yup log(ŷup) + (1− yup) log(1− ŷup)], (6)

where (u, p) represents a user-place pair, yup indicates whether user u has visited
place p, and ŷup is the model’s predicted probability of user u visiting place p.
The loss function encourages the model to accurately predict existing connections
while avoiding false positives in the user-place interaction graph.

Unlike GFM’s propagation, these graph-based methods provide more con-
trolled information flow, potentially reducing noise from indirect relationships
while retaining essential structural information in the user-place interaction net-
work. Moreover, whereas equation (2) focuses on user-place features or other
scalar-based predictions, equation (6) distinctly zeroes in on explicit (u, p) inter-
actions via a binary cross-entropy loss. This emphasis on direct user-place link
prediction, whether user u visits place p, offers a clearer objective for learning
these interactions compared to the more generalized or feature-based loss used
in equation (2).

3.3 Vector-based Models

Vector-based methods take the most direct approach, focusing solely on feature
relationships without utilizing graph structure. These methods represent users
through demographic information and explicit personal preferences, while places
are represented by their location attributes and characteristics. The models em-
ploy different architectures:
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Autoencoder model uses a deterministic encoder-decoder structure with a
bottleneck layer:

z = fϕ(X) and X̂ = gθ(z), (7)

which is trained with MSE reconstruction loss:

L = ∥X − X̂∥2. (8)

VAE variants (VAE and BetaVAE) introduce probabilistic encoding through
a variational inference framework:

qϕ(z|X) = N (µϕ(X), σϕ(X)) (9)

with a combined loss function:

L = ∥X − X̂∥2 + β ·KL(qϕ(z|X)∥p(z)), (10)

where β = 1 for VAE and β > 1 for BetaVAE. These methods serve as an im-
portant baseline, demonstrating the effectiveness of direct feature relationships
without the complexity of graph structure.

Fig. 1. Information flow analysis in different recommendation approaches

4 Results

In this section, we present a comprehensive analysis of our experimental results,
comparing various models across different metrics and settings. We evaluate
the performance using MSE, MAE, CS, precision@k, and recall@k for different
values of k [9].



Investigating the Limits of GFM 7

4.1 Overall Performance Comparison

Table 2 presents overall evaluation results for all models at k=5, which show
how the performance compares depending on the methods and the models.

Table 2. Model performance comparison (k=5)

Method Model MSE (↓) MAE (↓) CS (↑) P@5 (↑) R@5 (↑)

GFM GraphAny 20.9747 2.3957 0.9716 0.0008 0.0013

Graph-based
GCN 13.2601 1.9900 0.9813 0.0128 0.0211
GraphSAGE 16.0332 2.4205 0.9674 0.0001 0.0002
Node2Vec 20.1005 2.3473 0.9726 0.0009 0.0016

Vector-based
VAE 8.4498 1.7581 0.9826 0.0022 0.0037
β-VAE 13.5527 2.1140 0.9763 0.0012 0.0022
AE 1.0950 0.7028 0.9938 0.0331 0.0592

From these results, we observe that the vector-based methods outperform the
graph-based methods on most metrics, with AE achieving the best overall per-
formance in terms of all five metrics. This indicates that, in the context of travel
recommendations, simple vector representations may provide more reliable em-
beddings than graph-based approaches. GraphAny, GraphSAGE, and Node2Vec
demonstrate comparatively lower ranking performance, suggesting challenges in
effectively capturing indirect relationships while minimizing noise [14]. Mean-
while, GCN shows moderate performance, indicating that some localized graph
information can be beneficial, although it is still outperformed by AE.

4.2 Impact of Top-k Selection

To understand how different models perform with varying numbers of recom-
mendations, k, we analyze each model’s performance across three different k
values, k = 5, 10, and 20. Table 3 shows the precision and recall metrics for
different models, where the number of recommendations is set to 5, 10, and 20.

P The results show that the precision and recall metrics can vary signifi-
cantly with k. The differential behavior of graph-based and vector-based models
as k increases provides insight into how architectural choices affect recommen-
dation quality. GCN exhibits a gradual precision degradation with linear recall
growth, suggesting GCN is capturing increasingly distant relationships through
indirect user-location-user connections. In contrast, vector-based models, par-
ticularly AE, demonstrate superior precision performance, accompanied by di-
minishing recall growth. While graph-based models continue to find recommen-
dations through indirect paths, potentially incorporating noise from users who
visited the same locations for different purposes, vector-based models strictly ad-
here to direct similarity measures, leading to better precision at lower k values
but steeper performance drops when exhausting highly similar recommendations.
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Table 3. Precision and recall performance for top-5, top-10, and top-20 similar trips

Method Model P@5 (↑) P@10 (↑) P@20 (↑) R@5 (↑) R@10 (↑) R@20 (↑)

GFM GraphAny 0.0008 0.0008 0.0008 0.0013 0.0026 0.0057

Graph-based
GCN 0.0128 0.0121 0.0118 0.0211 0.0385 0.0735
GraphSAGE 0.0001 0.0001 0.0001 0.0002 0.0006 0.0011
Node2Vec 0.0009 0.0008 0.0008 0.0016 0.0028 0.0058

Vector-based
VAE 0.0022 0.0022 0.0019 0.0037 0.0073 0.0127
β-VAE 0.0012 0.0013 0.0012 0.0022 0.0042 0.0081
AE 0.0331 0.0180 0.0100 0.0592 0.0641 0.0713

4.3 Dataset Size Analysis

We conducted experiments with three different dataset sizes, |V|, across multiple
models to analyze the impact of dataset size on model performance. Table 4
presents these results.

Table 4. Model performance across different dataset size (k = 5)

Model | V | MSE (↓) MAE (↓) P@5 (↑) R@5 (↑)

GraphAny
2000 20.7186 2.3870 0.0089 0.0159
5000 21.0153 2.4150 0.0034 0.0066
86761 20.9747 2.3957 0.0008 0.0013

GCN
2000 16.1780 2.1589 0.0292 0.0551
5000 15.0940 2.1143 0.0183 0.0378
86761 13.2601 1.9900 0.0128 0.0211

GraphSAGE
2000 28.5383 2.7780 0.0009 0.0019
5000 18.1254 2.4444 0.0007 0.0017
86761 16.0332 2.4205 0.0001 0.0002

Node2Vec
2000 22.0694 2.4124 0.0109 0.0196
5000 22.1293 2.4453 0.0028 0.0059
86761 20.1005 2.3473 0.0009 0.0016

VAE
2000 8.4498 1.7581 0.0022 0.0037
5000 6.6342 1.6820 0.0081 0.0161
86761 6.6815 1.6831 0.0186 0.0367

β-VAE
2000 13.5527 2.1140 0.0012 0.0022
5000 10.0136 1.9200 0.0070 0.0141
86761 9.3613 1.8823 0.0123 0.0233

AE
2000 1.0950 0.7028 0.0331 0.0592
5000 2.1770 1.0420 0.0204 0.0412
86761 2.5165 1.1164 0.0243 0.0478
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Interestingly, we observe that increasing the dataset size does not necessar-
ily lead to better performance across all models. While GFM and graph-based
models generally show modest improvements in MSE and MAE metrics with
larger datasets, P@5 and R@5 values decrease.

4.4 Impact of Information Propagation Range

To better understand how the range of information propagation affects model
performance, we conducted experiments with different hop counts for GCN, and
the walk length and context size for Node2Vec. Note that we focus on these two
models as they show different mechanisms of information propagation through
graph structure, while other models either do not use graph propagation or have
fixed propagation patterns. The results are shown in Table 5.

Table 5. Performance comparison across different information propagation ranges

Model Range MSE (↓) MAE (↓) P@5 (↑) R@5 (↑)

GCN
1-hop 16.1004 2.2242 0.0443 0.0927
2-hop 14.9774 2.1022 0.0190 0.0373
3-hop 15.2528 2.1256 0.0118 0.0247

Node2Vec
Walk-5/Context-3 19.5810 2.3366 0.0148 0.0294
Walk-10/Context-5 23.2161 2.4858 0.0021 0.0046
Walk-20/Context-10 22.4065 2.4805 0.0016 0.0032

The results show that increasing the propagation range leads to a decrease
in recommendation accuracy. For GCN, 2-hop propagation achieves optimal
MSE and MAE, but precision and recall metrics consistently decrease as the
hop count increases. Node2Vec shows similar behavior, with the shortest range
achieving the best performance across all metrics. These findings suggest that
while broader information propagation helps minimize overall prediction error,
it lowers the model’s ability to make precise recommendations.

Discussion The experimental results give three key insights about embedding
approaches in travel recommendation systems.

First, the superior performance of vector-based methods across metrics chal-
lenges a fundamental assumption in recommendation systems that edges in graph
structures lead to better recommendations. While the consistently lower error
rates of AE suggest that user-location interactions may be effectively captured
through direct mappings, it is important to note that this advantage might be
partly explained by the training objective of the AE. Specifically, AE-based
models minimize a reconstruction error that is closely tied to the evaluation
metrics, whereas graph-based models do not directly optimize for the same ob-
jective. Therefore, while the performance gap highlights the potential advantages
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of more direct user-location representations, it also underscores the need to in-
terpret these metrics in light of the models’ respective training objectives.

Second, the degradation of graph-based models’ performance with increased
dataset size and propagation range reveals a structural limitation. The declining
precision metrics of GCN and Node2Vec with extended propagation ranges indi-
cate that indirect user-location-user connections may introduce more noise than
signal, as users might visit the same locations for different purposes. This obser-
vation is supported by GraphSAGE’s performance, where broader information
sampling appears to amplify this noise rather than extract meaningful patterns.

Third, the inverse relationship between dataset size and recommendation ac-
curacy in graph-based models, contrasted with the stable performance of vector-
based approaches, suggests that the complexity of graph structures may not scale
effectively with travel data. This pattern indicates that in the travel domain, the
quality and directness of user-location relationships may be more crucial than
the quantity of indirect connections captured through graph structures. These
findings align with the notion that GNN’s message-passing mechanisms may
become increasingly susceptible to structural noise as graph size grows [5].

5 Conclusion

This study demonstrates that vector-based models can outperform graph-based
models in travel recommendation systems, with AE achieving the best MSE of
1.0950. These results suggest that the inherent characteristics of travel data may
need additional refinement for graph-structured representations. This study also
demonstrated the need for domain-aware loss engineering and GFM architec-
tures that better align with bipartite graphs with the specific demands of travel
recommendation problems.

Moreover, this study empirically shows several limitations of GFM. Our ex-
periments show that increasing the number of connections can degrade key met-
rics like precision and recall. These observations underscore that the benefits of
graph-based representations in recommendation systems are highly dependent
upon the domain characteristics and the effectiveness of the graph structure in
capturing meaningful user-item relationships.

Future work should focus on developing hybrid architectures that can selec-
tively use graph structures while maintaining the effectiveness of direct user-
location mappings. Additionally, investigating methods for filtering meaning-
ful connections in travel graphs and developing domain-specific message-passing
mechanisms could address the current limitations of graph-based approaches in
travel recommendation systems.
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